To ease your site search, article categories are at bottom of page.

September 19, 2010

Castor bean genome published

A research team co-led by scientists from the J. Craig Venter Institute (JCVI) and the Institute for Genome Sciences (IGS), University of Maryland School of Medicine, have published the sequence and analysis of the castor bean (Ricinus communis) genome in Nature Biotechnology.

Agnes P. Chan, Ph.D., JCVI, and Jonathan Crabtree, Ph.D., IGS were co-lead authors on the paper describing the 4.5X coverage of this important oilseed crop. The availability of the castor bean genome also has important biodefense implications since the plant produces the powerful toxin, ricin.

The castor bean, a tropical perennial shrub found in Africa and other tropical and subtropical regions in the world, is a member of the Euphorbiaceae family. There are approximately 6,300 species in this family that includes the cassava, rubber tree, ornamental poinsettias and jatropha. While the castor bean genome is the first to be sequenced and published from this family, the jatropha genome has been sequenced by JCVI and the company Synthetic Genomics Inc. Jatropha is also an oilseed crop.

The sequencing of the castor bean genome to 4.5 X coverage was conducted at JCVI. The results of this work show that the genome is 350 Mb and has an estimated 31,237 genes. Because of the potential use of castor bean as a biofuel and its production of the potent toxin ricin, the team focused efforts on genes related to oil and ricin production. They analyzed important metabolic pathways and regulatory genes involved in the production and storage of oils in the castor bean. The analyses could be important for comparative studies with other oilseed crops, and could also allow for genetic engineering of castor bean to produce oil without ricin.

Identifying and understanding the ricin–producing gene family in castor bean will be important in preventing and dealing with potential bioterrorism events. Genomics enables enhanced diagnostic and forensic methods for the detection of ricin and precise identification of strains and geographical origins. The team discovered that the ricin gene family was larger than previously thought, and they revealed approximately 28 genes in the ricin producing family. As a next step, the group suggest further comparative genomic studies with the close relative cassava, a major crop in the developing world, to further elucidate their disease resistance aspects.

Dr. Chan stated, "The availability of the castor bean genome will encourage more research into the positive aspects of this oilseed crop as a potential biofuel. Further study will also elucidate many aspects about ricin and enable researchers to potentially eliminate the bioterrorism threat of this natural toxin."

Other organizations involved in the research were: Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD; United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Crop Improvement and Utilization, Albany, CA; Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE; International Institute of Tropical Agriculture, Oyo State, Ibadan, Nigeria; Institut fur Mikrobiologie und Genetik, Abteilung Bioinformatik, Universitat Gottingen, Gottingen, Germany; the Broad Institute of theMassachusetts Institute of Technology and Harvard, Cambridge MA; and the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.

 J. Craig Venter Institute

Article Categories

AGRA agribusiness agrochemicals agroforestry aid Algeria aloe vera Angola aquaculture banana barley beans beef bees Benin biodiesel biodiversity biof biofuel biosafety biotechnology Botswana Brazil Burkina Faso Burundi CAADP Cameroon capacity building cashew cassava cattle Central African Republic cereals certification CGIAR Chad China CIMMYT climate change cocoa coffee COMESA commercial farming Congo Republic conservation agriculture cotton cow pea dairy desertification development disease diversification DRCongo drought ECOWAS Egypt Equatorial Guinea Ethiopia EU EUREPGAP events/meetings exports fa fair trade FAO fertilizer finance fisheries floods flowers food security fruit Gabon Gambia gender issues Ghana GM crops grain green revolution groundnuts Guinea Bissau Guinea Conakry HIV/AIDS honey hoodia horticulture ICIPE ICRAF ICRISAT IFAD IITA imports India infrastructure innovation inputs investment irrigation Ivory Coast jatropha kenaf keny Kenya khat land deals land management land reform Lesotho Liberia Libya livestock macadamia Madagascar maize Malawi Mali mango marijuana markets Mauritania Mauritius mechanization millet Morocco Mozambique mushroom Namibia NEPAD Niger Nigeria organic agriculture palm oil pastoralism pea pest control pesticides pineapple plantain policy issues potato poultry processing productivity Project pyrethrum rai rain reforestation research rice rivers rubber Rwanda SADC Sao Tome and Principe seed seeds Senegal sesame Seychelles shea butter Sierra Leone sisal soil erosion soil fertility Somalia sorghum South Africa South Sudan Southern Africa spices standards subsidies Sudan sugar sugar cane sustainable farming Swaziland sweet potato Tanzania tariffs tea tef tobacco Togo tomato trade training Tunisia Uganda UNCTAD urban farming value addition value-addition vanilla vegetables water management weeds West Africa wheat World Bank WTO yam Zambia Zanzibar zero tillage Zimbabwe

  © 2007 Africa News Network design by Ourblogtemplates.com

Back to TOP